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Two Models of Meaning

Abstract16

A core tenet in linguistic theory is the principle of compositionality, which holds that17

the meaning of a multi-word utterance directly derives from the meanings of the indi-18

vidual words, and the rules by which they are combined. Semantic theories of lexical19

word meaning and compositional utterance meaning have, however, developed into sur-20

prisingly distinct fields of study. Lexical semantic theories of word meaning focus on21

modeling conceptual structure and similarity, e.g., the words “tea” and “coffee” are22

similar in that they both describe drinkable substances. Formal semantic theories fo-23

cusing on compositional utterance meaning, in turn, focus on modeling sentence- and24

discourse-level entailments and inferences, e.g., “drinking hot coffee” entails “drinking25

coffee”. Critically, attempts at unifying models of lexical and compositional seman-26

tics have proven challenging and often yield complex frameworks, in which word- and27

utterance-level meanings are patched together to form a whole, without fully integrating28

their semantic contributions. We here revisit the principle of compositionality from the29

neurocognition of language, which reveals that the human comprehension system har-30

nesses distinct models for lexical and compositional meaning, and that these models are31

critically intertwined in a cyclic architecture for language comprehension. Within this32

architecture, compositionality arises from a non-linear mapping of lexical semantic rep-33

resentations into a space for compositional semantic meaning, resulting in a continuous,34

expectation-based, and spatiotemporally-extended notion of compositional integration.35

This novel perspective on compositionality, combining linguistic and neurocognitive the-36

ory, paves way for more integrative approach towards modeling the meaning of words37

and utterances.38
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Two Models of Meaning

1 Introduction39

One of the core topics in linguistic theory has traditionally been the question of how40

the meaning of complex multi-word utterances is derived from the meaning of the indi-41

vidual words that constitute these utterances. In the traditional view, there is a clear42

separation between the syntactic principles that determine how words can be combined43

to form complex utterances, and the semantic principles that define how meanings are44

represented and constructed. This distinction is colorfully illustrated in the famous ex-45

ample “Colorless green ideas sleep furiously”, which was introduced as an example of46

a sentence that is grammatically correct, yet nonsensical (Chomsky, 1957, p.15). This47

distinction between syntax and semantics has long been a guiding principle in answering48

the overarching question of how meaning is assigned to linguistic input. Specifically, it49

has led to the fundamental principle that the meaning of a complex expression is fully50

determined by the meanings of the individual words that constitute the expression, and51

the way that they are combined (Partee, 1995). This principle of compositionality lies52

at the core of current approaches in semantic theory, which presuppose a close relation-53

ship between the lexical meanings of individual words and the compositional meanings54

assigned to sentences and utterances; that is, utterance-level meaning is directly derived55

from the meanings of the individual words and the syntactic rules by which they are56

combined.57

The close formal relationship between lexical and compositional meaning that is58

assumed by the principle of compositionality has some desirable properties, as it explains59

the observation that human language users are able to produce and understand an60

infinitely large number of complex expressions that they have not encountered before61

(referred to as productivity of language use), and that they can systematically combine62

and reorder the constituents of complex expressions into novel utterances (systematicity63

of language use). While the principle of compositionality takes center stage in explaining64
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these premises of language use, semantic theories that study lexical meaning at the level65

of words and and those that focus on compositional meaning at the level of sentences66

and discourses have developed into surprisingly distinct fields of study.67

Lexical semantic (LS) theories aim to model the meaning of individual words. In par-68

ticular, distributional approaches to LS model word meaning as vector representations69

derived from semantic features, capturing the similarities and dissimilarities between70

concepts in high-dimensional vector spaces: e.g., the concepts “tea” and “coffee” could71

be modeled with vectors that encode their similarity in that they are both drinkable72

substances, but also their dissimilarity in that one is made from leaves and the other73

from beans. To formalize the principle of compositionality, there have been numerous74

attempts to combine these LS representations into compositional semantic (CS) rep-75

resentations spanning multi-word utterances, for instance through vector averaging or76

multiplication (e.g., Mitchell and Lapata, 2010). However, these approaches fall short77

in approximating human-like compositionality, (Pavlick, 2022). Formal semantic frame-78

works, by contrast, fare a lot better in modeling the CS meaning of multi-word ut-79

terances. These formal semantic frameworks are typically grounded in mathematical80

logic, where LS meanings are modeled as functions—thereby sacrificing their conceptual81

richness and structure—and composition is modeled as function application (e.g., the82

meaning of “hot coffee” results from applying the function “hot” to the argument “cof-83

fee”). While these frameworks neatly capture CS meaning in terms of truth-conditional84

entailment and inference, they do not naturally capture the similarities and dissimilar-85

ities between lexical items, motivating approaches that aim to introduce distributional86

LS meanings into such frameworks (Garrette et al., 2014; Asher et al., 2016; Beltagy87

et al., 2016). While these hybrid approaches may conceptually come closest to imple-88

menting the principle of compositionality, they do often yield rather ‘Frankensteinian’89

frameworks in which distributional and formal semantics are patched together to form a90

whole, while still living in distinct representational spaces, thereby not fully integrating91
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their semantic contributions.92

These attempts at implementing the principle of compositionality by combining LS93

and CS meaning into a single semantic framework raise an important question, namely94

whether integrating these fundamentally different models of meaning is the right way95

forward. One way to address this question is to turn to how the human brain represents96

and constructs meaning. Advances in the neurocognition of language comprehension97

paint a picture supporting a perspective in which LS and CS meaning do indeed co-exist98

and interact, and recent neurocomputational modeling work suggests compositionality is99

achieved by mapping representations from an LS meaning space into a seperate space for100

CS meaning. Neurocognitive theory, informed by empirical and modeling results, thus101

suggests that LS and CS meaning do indeed inhabit distinct meaning spaces, but that102

they are also critically intertwined in the compositional comprehension process: incre-103

mental meaning construction involves retrieval of LS meaning, informed by the unfolding104

CS utterance context, which is accordingly integrated into an updated representation of105

the CS utterance meaning (Brouwer et al., 2012, 2017, 2021a). We therefore argue that106

the traditional notion of compositionality, which is grounded in syntactic combinatory107

rules, needs to be revised into a more dynamic notion of compositional integration, and108

we discuss the theoretical and empirical implications of this proposal.109

2 The linguistic perspective: How meaning can be mod-110

eled111

In the study of linguistic meaning, a variety of formal frameworks has been proposed112

to model meaning at the level of words, sentences, and larger discourses. While these113

approaches generally agree upon the principle that these levels of meaning are closely114

related to each other, the core phenomena studied within these frameworks vary widely,115

ranging from word-level similarity and conceptual structure to sentence-level entailments,116
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2.1 Lexical semantics Two Models of Meaning

discourse structure and ‘world knowledge’-driven inference. Attempts at implementing117

the principle of compositionality by integrating these approaches into a single semantic118

framework have proven challenging. This results in a state of affairs that suggests that LS119

and CS should instead be treated as complementary, but interacting, models of meaning.120

2.1 Lexical semantics: Conceptual knowledge and structure121

Semantic formalisms that aim to capture word-level (LS) meaning from a cognitive per-122

spective are typically strongly grounded in the study of human semantic memory: the123

collection of knowledge that allows humans to not only use and understand language,124

but also to navigate the world around us, e.g., by recognizing and classifying objects. A125

core notion that these approaches aim to capture is the observation that the conceptual126

knowledge associated with individual words is both gradient and structured: concepts127

are related to each other to different degrees, which is quantified as semantic similarity128

(e.g., “bird” is more similar to “dog” than to “spoon”), and these relations are hier-129

archical in nature, in the sense that particular concepts are more general than others130

(e.g., “bird” subsumes both “robin” and “ostrich”). Theories of lexical meaning aim to131

capture this conceptual knowledge and structure by assuming semantic features as the132

representational currency for conceptual knowledge (McRae et al., 2005).133

Semantic features constitute the dimensions of the LS representations and may take134

different forms (see Frisby et al., 2023). A first set of approaches intuitively concep-135

tualizes these semantic features as identifying discrete categories or local features; for136

instance, the dimensions of the semantic representation of “bird” may indicate the pres-137

ence/absence of features such as has wings, can fly, or has eyes. Each semantic repre-138

sentation, then, represents a vector in a high-dimensional semantic space, which can be139

directly compared to other representations using various vector-based metrics to quantify140

semantic similarity. The advantage of these approaches is that semantic similarity is not141

only quantifiable, but that the dimensions are also directly interpretable as independent142
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categories or features.143

An alternative approach to capturing semantic features for LS is grounded in a144

theoretical foundation that has become known as the Distributional Hypothesis—in145

the formulation of J. R. Firth: “You shall know a word by the company it keeps!”146

(Firth, 1957, p.11). Based on the idea that “the meaning of words lies in their use”147

(Wittgenstein, 1953, pp. 80, 109), the Distributional Hypothesis assumes that words that148

occur in similar contexts will have similar meanings (see also Turney and Pantel, 2010;149

Clark, 2012; Erk, 2012; Lenci, 2018). This hypothesis has informed various influential150

implementations in which the dimensions of the resulting LS representations capture151

lexical co-occurrence information across linguistic contexts, i.e., sentences or documents152

(e.g., Latent Semantic Analysis, LSA; Landauer and Dumais, 1997, hyperspace analogue153

of language, HAL; Burgess, 1998, and dependency vectors, DV; Padó and Lapata, 2007).154

In more recent instantiations of the Distributional Hypothesis, LS vectors are word155

embeddings with abstract dimensions that are not directly interpretable, derived for156

instance from neural prediction models (e.g., word2vec, Mikolov et al., 2013a,b; GloVe,157

Pennington et al., 2014; ELMo, Peters et al., 2018; BERT, Devlin et al., 2019; GPT,158

Radford et al., 2019).159

The resulting distributional lexical semantic (DLS) representations have been ex-160

tremely successful in capturing conceptual knowledge and structure in terms of semantic161

similarity. This has inspired investigations into how they can be combined composition-162

ally into utterance-level CS representations, for instance, by using vector operations as a163

proxy for semantic composition (Mitchell and Lapata, 2010), or by combining DLS repre-164

sentations into more complex structures to arrive at CS meaning (Baroni and Zamparelli,165

2010; Coecke and Clark, 2011; Socher et al., 2012; Grefenstette and Sadrzadeh, 2015).166

While these approaches have shown some promise, for instance in modeling adjective-167

noun modification (Baroni et al., 2014; Vecchi et al., 2017), it has proven challenging to168

capture higher level semantic composition, supporting the conclusion that feature-based169
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LS representations are “good at lexical semantics, bad at composition” (Pavlick, 2022,170

p. 464).171

2.2 Compositional semantics: The meaning of multi-word utterances172

Formal semantic frameworks for CS meaning focus on modeling the construction and173

interpretation of phrases, sentences and multi-sentence discourses. Starting from the174

idea that sentences (or: propositional-level meanings) can be either true or false with175

respect to a state of affairs in the world, approaches in formal semantics focus on de-176

scribing sentence meanings with respect to formal model structures that describe such177

situations. In its simplest form, a model structure is defined as a set of entities, called178

the universe U , and an interpretation function I that assigns entities from the universe179

(or sets thereof) to formal representations of linguistic expressions (e.g., the interpreta-180

tion I(bird) describes the subset of entities in the universe U that are birds). Sentences181

can thus be assigned truth values within these model structures via a translation to182

some logical representation of their meaning, which in turn obtains a formal model in-183

terpretation via the interpretation function (e.g., “Tweety is a bird” is true if and only184

if “Tweety” refers to an entity in the universe that is also in the set of birds). Sentence185

meaning, then, is defined in terms of the truth conditions with respect to formal model186

structures: the constraints under which the logical representation of the sentence is as-187

signed the truth value “true” in the model—in other words, the conditions under which188

the model satisfies the meaning of the sentence. Two sentences are assumed to express189

the same meaning if they have the same truth conditions, i.e., they are satisfied by the190

same models. This critically allows for a formalization of the logical entailment relation191

between individual sentences: Sentence A is logically entailed by sentence B if any model192

that satisfies the meaning of sentence B also satisfies the meaning of sentence A (e.g.,193

the sentence “Mike paid” is logically entailed by the sentence “Mike ordered and paid”).194

Approaches in semantic theory differ in terms of the logical framework that is used to195
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represent meaning as well as in terms of the complexity of the underlying model struc-196

tures, which may capture, for instance, event structure (Davidson, 1969) or a notion197

of time (Kamp, 1980). Furthermore, traditional approaches have formalized composi-198

tional semantic construction in a static manner, assuming independent representations199

for lexical constituents (e.g., as lambda functions) which are then combined into com-200

positional representations through function application (Montague, 1970). More recent201

semantic theorizing, however, has embraced a dynamic view toward meaning construc-202

tion, emphasizing the incremental nature of linguistic processing in terms of the growth203

of semantic information over time (Nouwen et al., 2022).204

2.2.1 Dynamic semantics: Discourse structure and composition205

A dynamic semantic framework that is particularly amenable to different variations206

of model-theoretic complexity is Discourse Representation Theory (DRT; Kamp, 1981;207

Kamp and Reyle, 1993; Kamp et al., 2011). DRT is a mentalist framework for formal208

semantics that provides abstract representations corresponding to the types of mental209

representations assumed to underlie human language comprehension, often referred to210

as mental models (Johnson-Laird, 1983) or situation models (Zwaan and Radvansky,211

1998). The basic meaning units in DRT are called Discourse Representation Structures212

(DRSs), which are formally defined as a tuple ⟨U, C⟩ consisting of a set of entities U and213

a set of conditions on these entities C. The conditions in a DRS may describe simple214

first-order properties or relations, but may themselves also include logical combinations215

of DRSs. DRSs are often visualized using box-representations such as in example (1)216

below, where the universe of the DRS ({x,y}) is represented in the top of the box and217

the conditions are described as first-order predicates over these variables:218

(1) Mike called the waiter.219
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x y

x = Mike

waiter(y)

call(x,y)

220

Each DRS can be formally assigned truth conditions relative to a model structure,221

via either a translation to first-order logic or via an embedding function (Kamp, 1981).222

A critical aspect of DRT is that it formalizes meaning at the discourse rather than the223

sentence level; each DRS not only defines the truth conditions for a given sentence,224

but also provides a context for any upcoming semantic content, e.g., in terms of the225

referents that are available for pronominal reference. For example, a discourse in which226

the sentence above is continued with a novel sentence containing a referential expression,227

is formalized as an updated DRS in which the initial meaning representation is extended228

with the novel semantic information. This is effectuated as a ‘merge’ operation (+)229

between DRSs:230

(2) Mike called the waiter. He did not order any food.231

x y

x = Mike

waiter(y)

call(x,y)

+
¬

z

food(z)

order(x,z)

=

x y

x = Mike

waiter(y)

call(x,y)

¬

z

food(z)

order(x,z)

.232

The DRS resulting from this merge operation combines the universes of both DRSs, {x,y}233

for the first DRS and the empty set for the second DRS, as well as their conditions.234

DRT thus captures discourse-level meaning in terms of formal truth-conditional rep-235

resentations, while at the same time offering a dynamic semantic framework for mean-236

ing construction, in which novel semantic information is continuously merged with the237

10 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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discourse context established so far. To arrive at these representations in a composi-238

tional manner, Muskens (1996) defines a version of DRT that employs lambda calculus239

to formalize how word-level meanings (formalized as functions in the form of lambda240

expressions) combine into sentence- and discourse-level DRS representations. Such com-241

positional formulations, however, still assume a relatively static representation of lexical242

meaning, where a word like “waiter” is interpreted relative to a formal model structure as243

the set of entities that satisfy this predicate. This means that lexical-level similarities, as244

for instance modeled in distributional approaches to lexical semantics, are not naturally245

captured within these representations. Another important limitation of formal semantic246

approaches such as DRT is that that these logical frameworks do not naturally allow247

for capturing defeasible inferences that go beyond the literal meaning of the individual248

expressions—although various extensions of DRT have been proposed that do capture249

presuppositions and implicatures (e.g., Layered DRT; Geurts and Maier, 2013, Projec-250

tive DRT; Venhuizen et al., 2018), as well as rhetorical structure (Segmented DRT; Asher251

and Lascarides, 2003). In particular, the interpretation of DRS representations in terms252

of model-derived truth conditions does not allow for capturing defeasible probabilistic253

inferences that reflect world knowledge-driven expectations; for instance, the inference254

that it is likely that “Mike” is in a “restaurant” in example (2) above. In order to capture255

such world knowledge-driven inferences, recent work has sought to combine insights from256

model-theoretic semantics with those deriving from distributional approaches to develop257

a framework for expectation-based semantics, which offers distributional representations258

of CS meaning at the level of propositions (Venhuizen et al., 2019a, 2022).259

2.2.2 Expectation-based semantics: World knowledge-driven inferencing260

Distributional Formal Semantics (DFS; Venhuizen et al., 2019a, 2022) is a distributional261

framework for meaning representation that builds on neurocognitive models of story com-262

prehension (Golden and Rumelhart, 1993; Frank et al., 2009) to capture propositional263

11 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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meanings in terms of co-occurrences in the world. Conceptually, DFS defines a meaning264

space in terms of different states-of-affairs in the world, in which propositions such as265

enter(mike,bar), describing “Mike entering a bar”, may or may not co-occur; e.g., en-266

ter(mike,bar) may co-occur with order(mike,cola), but not with enter(mike,restaurant).267

The DFS meaning representations that derive from this space are vectors that are com-268

positional at the propositional level, in that meanings can be combined using logical269

operators, as well as probabilistic in the sense that they inherently capture the likeli-270

hood that meanings (co-)occur within the meaning space.271

More formally, DFS defines meaning relative to a (finite) set of formal model struc-272

tures MP, which together constitute the meaning space based on a finite set of proposi-273

tions P. Each model constitutes an observation of a state of affairs in the world, in that274

each M ∈ MP is a first-order model that describes which of the propositions in P are275

true in that model. The set of models MP can thus be interpreted as a set of possible276

worlds, in which different constellations of propositions may co-occur (in the tradition277

of Carnap, 1988). The meaning of an individual proposition, then, is defined relative to278

this set of models (or possible worlds); that is, the meaning of a (simple or complex)279

proposition p ∈ P is defined by a vector JpKMP = v⃗(p) that assigns 1 to each M ∈ MP280

that satisfies p, and 0 otherwise (Venhuizen et al., 2022).281

Critically, as propositional meaning is directly defined in terms of satisfaction with282

respect to formal model structures, DFS representations are fully compositional at the283

propositional level. This means that the meaning of any logical combination of proposi-284

tions can be derived from the meaning space as operations over the underlying meaning285

vectors. Specifically, we can define the meaning of the negation of a given proposition p286

as a vector operation: J¬pKMP = 1 − v⃗(p), which results in a vector that is the comple-287

ment of v⃗(p) and that assigns 0 to each M ∈ MP that satisfies p, and 1 otherwise. The288

conjunction of two propositions p and q, in turn, is defined as component-wise vector289

multiplication: Jp ∧ qKMP = v⃗(p)v⃗(q), such that the resulting vector v⃗(p ∧ q) assigns 1 to290

12 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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each M ∈ MP that satisfies both p and q, and 0 otherwise. Together, these negation and291

conjunction operators allow for the derivation of any arbitrarily complex combination of292

propositions, as well as for definitions of existential quantification (e.g., “someone orders293

cola”) and universal quantification (“everyone pays”); see Venhuizen et al. (2022) for294

details.295

The set of models MP constitutes a meaning space that encodes the meaning of296

(complex) propositions in terms of their co-occurrence with other propositions: propo-297

sitions that co-occur across a large set of models (observations of states-of-affairs in the298

world) will result in similar meaning vectors. Critically, while propositional meaning is299

defined in terms of binary vectors relative to the meaning space MP, this space actu-300

ally constitutes a continuous vector space RMP . As a result, the meaning space defines301

meanings not only for binary propositional vectors, but also for real-valued vectors that302

do not directly correspond to (combinations of) propositions; rather, these vectors can303

be described as representing meanings that may lie in between the meanings of propo-304

sitional expressions. As will become apparent below, these real-valued vectors represent305

sub-propositional meanings (e.g., “bartender brings” which still requires an object) that306

can be used to express the incremental construction of propositional-level meaning (e.g.,307

by adding “fries” to form bring(bartender,fries), which is a full proposition).308

All meaning vectors that can be defined in the DFS meaning space inherently en-309

code probabilistic knowledge about (co-)occurrence in the world that is defined by the310

meaning space; propositions that are true in many models can be considered to have311

a high probability in the world. Hence, the probability P (a) of a (propositional or312

sub-propositional) expression a in this space is defined as follows:313

P (a) = 1
|MP|

∑
i

v⃗i(a) (1)

That is, the probability of a is defined as the fraction of models (observations) in which314

13 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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a is satisfied. This definition can be straightforwardly extended to a definition of the315

conditional probability of a given b: P (a|b) = P (a∧ b)/P (b). This means that the repre-316

sentations in DFS allow for calculating the conditional probability of any expression in317

relation to all other (propositional or sub-propositional) meanings that can be defined318

within the meaning space. As a result, we can use this probabilistic nature of the mean-319

ing representations to quantify the extent to which expressions are inferred from each320

other. Specifically, if the conditional probability P (a|b) equals 1 for some propositional321

meanings a and b, this means that a is satisfied in all the models that satisfy b; in other322

words, a is entailed by b (b ⊨ a). Furthermore, by comparing the conditional proba-323

bility P (a|b) to the prior probability P (a), the degree to which knowing b increases or324

decreases the certainty in a can be quantified, which gives us a notion of probabilistic325

inference (Venhuizen et al., 2022; Frank et al., 2009):326

inference(a, b) =


P (a | b) − P (a)

1 − P (a) if P (a | b) > P (a)

P (a | b) − P (a)
P (a) otherwise

(2)

This inference score results in a value between −1 and 1, such that negative values327

indicate that a is negatively inferred from b (or: knowing b decreases the probability328

that a is the case) and positive values indicate that a is positively inferred from b (or:329

knowing b increases the probability that a is the case). Hence, an inference score of 0330

indicates that a is probabilistically independent of b, an inference score of 1 indicates331

positive entailment (b ⊨ a) and an inference score of −1 indicates negative entailment332

(b ⊨ ¬a).333

Let us turn to an example to illustrate how this mathematical machinery can be used334

to quantify the inferences and expectations in a concrete meaning space. Figure 1 plots335

the inference score for a subset of the propositions that are defined in the meaning space336

presented in Venhuizen et al. (2022). Propositions take the form of predicated expres-337

sions, such that order(mike,cola) corresponds to the meaning of “Mike orders cola”. This338
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heatmap shows the value of inference(a,b), ranging from −1 (red) to +1 (green), for each339

propositional expression a given itself and each other propositional expression b. The340

green diagonal shows that each proposition is positively entailed by itself. Furthermore,341

certain propositions are negatively entailed by each other (e.g., enter(mike,bar) given en-342

ter(mike,restaurant), and vice versa), which reflects the fact that in the meaning space343

these propositions never co-occur. All graded values reflect probabilistic inferences; for344

instance, enter(mike,bar) is inferred negatively from order(mike,salad). Hence, these345

inferences reflect how the meaning vectors that derive from the DFS meaning space346

capture rich world knowledge based on propositional co-occurrences—in other words,347

to paraphrase the famous formulation of the Distributional Hypothesis by Firth (1957):348

you shall know a proposition by the company it keeps in the world.349

An important observation to make here is that the inferences made within such a350

propositional meaning space do not directly align with word-level LS inferences informed351

by semantic similarity. For instance, while “bar” and “restaurant” may be elicit similar352

associations on the lexical level (e.g., about ordering food and drinks), the propositions353

in which these expressions occur are not semantically similar within the DFS meaning354

space, due to the (relatively) low co-occurrence of these propositions across the observa-355

tions of states-of-affairs in the world. This means that the inferences that can be drawn356

from the DFS meaning space are distinct from those that can be drawn from lexical357

co-occurrences or componential analysis.358

2.3 Two models of meaning?359

The linguistic perspective delineates two models of meaning. On the one hand, DLS360

uses feature-based representations to model conceptual knowledge and structure. While361

these approaches do indeed successfully capture human intuitions about conceptual sim-362

ilarity, it has proven challenging to define compositionality over such LS representations363

(Pavlick, 2022). In fact, one can even raise the question if it is possible to express all of364
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Figure 1: Meaning space with probabilistic inferences. Cells plot the inference score of each
proposition a given each proposition b for a subset of propositions in the meaning space presented
in Venhuizen et al. (2022). Bright green cells indicate positive entailment between propositions (b ⊨
a), bright red cells indicate negative entailment (b ⊨ ¬a), and all other intermediate cells indicate
probabilistic inferences on this positive-to-negative continuum. Reproduced with permission (CC BY-
NC-ND 4.0) from Venhuizen et al. (2022).
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the complexities of compositional meaning within a meaning space for LS, of which the365

dimensions are assumed to represent some form of componential semantic features of in-366

dividual concepts. Dynamic semantic frameworks, like DRT, on the other hand, harness367

formal model theory to construct CS representations that successfully capture truth-368

conditional entailment relations. More recent expectation-based semantic frameworks,369

like DFS, extend this truth-conditional approach to capturing ‘world knowledge’-driven370

inferences in terms of probabilistic entailment relations. Neither of these formal semantic371

approaches to CS, however, captures the conceptual knowledge and structure that DLS372

approaches capture.373

Various methods have been developed that aim to incorporate lexical-level distribu-374

tional semantics into formal semantic frameworks (see, e.g., Coecke et al., 2010; Garrette375

et al., 2014; Asher et al., 2016; Beltagy et al., 2016), which for instance allow LS mean-376

ing to guide the construction of logical form for CS (Asher et al., 2016). What these377

approaches have in common, however, is that there remains a clear separation between378

the levels of representation that capture LS-derived properties (e.g., semantic similarity)379

and those that explain CS-derived properties (e.g., logical inference). Hence, in one way380

or the other, these frameworks fail to fully integrate the semantic contributions of LS381

and CS meaning. This raises the question if connecting these two models of meaning382

in a single formal semantic system is the right way forward. In what follows, we will383

address this question from the perspective of the neurocognition of language, and derive384

an architecture for incremental meaning construction that combines models of LS and385

CS meaning through a compositional integration process.386
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3 The neural perspective: How the brain represents mean-387

ing388

The neurocognition of language comprehension is concerned with how, when, and where389

in the brain meaning is attributed to incoming linguistic signal as it unfolds in time.390

Event-Related Potentials (ERPs)—stimulus-locked, scalp-recorded voltage fluctuations391

caused by post-synaptic neural activity—have been instrumental in addressing questions392

about the how and when (see Kutas et al., 2006; Kutas and Federmeier, 2011; Hoeks393

and Brouwer, 2014, for reviews). ERP studies focus on systematic voltage fluctuations,394

referred to as components, which are taken to reflect specific computational operations395

carried out in given neuro-anatomical networks (Näätänen and Picton, 1987). Of par-396

ticular salience to language comprehension are the N400 and the P600 components (see397

Brouwer et al., 2012; Kuperberg, 2007; Bornkessel-Schlesewsky and Schlesewsky, 2008,398

for reviews). Critically, the differential sensitivity of these components to aspects of LS399

and CS delineates a comprehension architecture in which meaning representations for400

LS and CS dynamically interact in the construction of compositional meaning. This dy-401

namic interplay between LS and CS forms the core of Retrieval-Integration (RI) theory,402

an integrated theory of the electrophysiology of language comprehension (Brouwer et al.,403

2012), with an explicit cortical mapping (Brouwer and Hoeks, 2013) and neurocompu-404

tational instantiation (Brouwer et al., 2017, 2021b).405

3.1 The Retrieval-Integration theory of online comprehension406

RI theory, as first formulated by Brouwer et al. (2012), provides an explicit account407

of the processes assumed to underlie the N400 and P600 components. The N400 is a408

negative deflection in the ERP signal that becomes apparent 200-300ms post-word onset409

and peaks at about 400 ms (see Figure 2), and was first identified in response to se-410

mantically incongruous words, such as the word “socks” in “He spread the warm bread411

18 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007



3.1 Retrieval-Integration theory Two Models of Meaning

+P600-effect

−muV

+muV

0 ms 500 1000

+N400-effect

−P600-effect

−muV

+muV

0 ms 500 1000

+N400-effect

−muV

+muV

0 ms 500 1000

~N400

~P600

−muV

+muV

0 ms 500 1000

~N400

~P600

Contrast 1 Contrast 2

c)

a) b)

d)

W
av

ef
or

m
-b

as
ed

C
om

po
ne

nt
 S

tr
uc

tu
re

La
te
nt

C
om

po
ne

nt
St

ru
ct

ur
e

Figure 2: N400 and P600 components in the ERP signal. Hypothesized ERP waveform for
a contrast between a target condition (red) compared to a baseline condition (blue). By convention
negative voltage is plotted upwards on the y-axis. This contrast elicits both an N400 and a P600 effect
for the target relative to the baseline condition, which result from the differential modulations of the
N400 and P600 components in the ERP signal, respectively. Reproduced with permission (CC BY 4.0)
from Brouwer and Crocker (2017).

with socks/butter” (Kutas and Hillyard, 1980). This component is, however, not just412

a response to an anomaly, but is in fact inversely proportional to the expectation of a413

word in context, such that less expected words yield larger N400 amplitudes (Kutas and414

Hillyard, 1984). N400 amplitude to unexpected words can, however, be attenuated if an415

incoming word shares semantic (Federmeier and Kutas, 1999) or orthographic features416

(Federmeier and Laszlo, 2009) with an expected word. Furthermore, the processes un-417

derlying the N400 are also sensitive to the semantic association of a word to its prior418

context (Aurnhammer et al., 2021), to the degree that strong association may override419

any effect of expectancy; that is, the word “socks” in the example above will not produce420

a larger N400 amplitude relative to “butter” when the critical sentence is embedded in a421

context discussing, for instance, someone trying find a fresh pair of socks before break-422

fast (Aurnhammer et al., 2023). Taken together, these findings pose clear constraints on423

the computational operations underlying the N400, leading to the now well-established424

perspective that the N400 is an index of the contextualized retrieval of feature-based LS425
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representations from long-term semantic memory, such that the more the context primes426

the LS features of an upcoming word, the more facilitated its retrieval and the more at-427

tenuated N400 amplitude (Kutas and Federmeier, 2000; Lau et al., 2008; Federmeier and428

Laszlo, 2009; van Berkum, 2009; Brouwer et al., 2012; Federmeier, 2022).429

The P600, in turn, is a positive deflection in the ERP signal that starts to emerge430

at about 600ms post-word onset (see Figure 2), and that was first identified in re-431

sponse to syntactically infelicitous words, such as the word “throw” in “The spoilt child432

throw/throws [. . . ].” This component is, however, not just sensitive to syntactic felicity.433

P600 amplitude also increases in response to structurally-induced garden-path construc-434

tions and long-distance wh-dependencies (Gouvea et al., 2010), semantic incongruities435

(Van Petten and Luka, 2012; Brouwer and Crocker, 2017), as well as a wide-range of436

phenomena requiring pragmatic inferencing (see Hoeks and Brouwer, 2014, for a review).437

Furthermore, it has recently been shown that the P600 is not just a binary reflection438

of well-formedness, but that its amplitude rather tracks the plausibility of a word in439

context in a continuous manner (Aurnhammer et al., 2023). Taken together, this is440

consistent with a view in which the P600 reflects the integration of incoming linguistic441

input into a CS representation of the unfolding utterance thus far, such that the more442

effort it takes to arrive at a coherent CS representation—in terms of construction, re-443

organization, and/or updating—the larger the amplitude of the P600 (Brouwer et al.,444

2012).445

Indeed, these perspectives on the N400 as LS retrieval and the P600 as CS integration446

suggest that the brain harnesses two separate models of meaning for LS and CS meaning.447

This raises the question, however, how these meaning spaces interface in online language448

comprehension; that is, how do we go from the perception of words through LS to CS? RI449

theory offers an integrated theory of the electrophysiology of language comprehension450

that combines the retrieval perspective on the N400 with the integration perspective451

on the P600 (Brouwer et al., 2012; Brouwer and Hoeks, 2013; Brouwer et al., 2017,452
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2021b; Venhuizen and Brouwer, 2025). On RI theory, the processing of an incoming453

word is mechanistically conceptualized as a process function, that maps an acoustically454

or orthographically perceived word form in the utterance context in which it occurs onto455

a CS representation of utterance meaning:456

process: (word form, utterance context) → CS representation (3)

Critically, this process function decomposes into a retrieve and integrate function, such457

that the perceived word form in an utterance context is first mapped onto a LS repre-458

sentation of word meaning:459

retrieve: (word form, utterance context) → LS representation (4)

This contextualized retrieval of word meaning is what underlies the N400 component, and460

the retrieved LS representation serves as input to an integrate function that combines it461

with the utterance context established thus far, to produce an updated CS representation462

of utterance meaning:463

integrate: (LS representation, utterance context) → CS representation (5)

This integration of the LS representation of the meaning of an incoming word with464

the utterance context underlies the P600 component. The resultant CS representation465

spanning the entire utterance will determine the utterance context for upcoming words;466

more specifically, it will serve as the utterance context that primes the LS representation467

associated with potential upcoming input.468

RI theory thus assumes a cyclic relationship between the retrieval processes under-469

lying the N400 and the integration processes underlying the P600. While ERPs are not470

directly informative about where these processes are carried out in the brain, aligning471
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insights from electrophysiology with those on the cortical organization of language—472

e.g., from functional Magnetic Resonance Imaging (fMRI) and lesion studies—results473

in a minimal functional-anatomic mapping of RI theory that further corroborates its474

cyclic nature (Brouwer and Hoeks, 2013). This functional-anatomic mapping is centered475

around the left posterior Middle Temporal Gyrus (lpMTG) as an epicenter/hub for re-476

trieval, and the left Inferior Frontal Gyrus (lIFG) as an epicenter/hub for integration477

(see Figure 3a). These epicenters/hubs are connected via white matter fibers in both a478

dorsal pathway (dp) and a ventral (vp) pathway (see Brouwer and Hoeks, 2013, section479

3.4, for further discussion). Depending on whether the input modality is spoken or writ-480

ten, a perceived word form enters the cortical RI cycle via either the auditory cortex481

(ac) or visual cortex (vc), respectively. The lpMTG then retrieves its associated LS word482

meaning representation, which is assumed to be stored across the association cortices,483

thereby generating the N400 component. The retrieved LS representation is then pro-484

jected to the lIFG where it is integrated with the current utterance context to produce485

an updated CS utterance representation. This updated CS utterance representation in486

the lIFG is then connected back to the lpMTG to provide an utterance context that487

leads to the pre-activation/priming of (aspects of) LS representations associated with488

potential upcoming words (see Brouwer and Hoeks, 2013, section 4.3, for a discussion489

on the temporal dynamics of the communication between the lIFG and the lpMTG).490

3.2 Neural meaning composition491

The neurocomputational instantiation of RI theory directly implements the cortical in-492

stantiation of RI in a recurrent neural network architecture (see Figure 3b). This ar-493

chitecture consists of five layers, starting with an input (‘ac/vc’) layer at which the494

model receives perceived word forms. These perceived word forms are projected through495

a ‘retrieval’ (lpMTG) layer, which combines it with a top-down CS utterance context496

projection, from the later ‘integration’ (lIFG) layer, to map the perceived word form497

22 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007
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Figure 3: Retrieval-Integration (RI) theory. (A) Functional-anatomic instantiation of RI theory:
Perceived word forms enter the RI cycle through the auditory cortex (ac) or the visual cortex (vc),
depending on the input modality (spoken versus written). The left posterior Middle Temporal Gyrus
(lpMTG) serves as retrieval epicenter/hub and core generator of the N400, while the left Inferior Frontal
Gyrus (lIFG) is serves as integration epicenter/hub and core generator of the P600. The epicenters/hubs
are connected via white matter fibers in both a dorsal pathway (dp) and ventral pathway (vp). (B)
Neurocomputational instantiation of RI theory: A recurrent neural network architecture that progres-
sively maps word forms in context onto a LS word meaning representation, and LS representations into
incremental CS utterance representations. N400 amplitude is estimated as the word-induced change in
activity the lpMTG layer, and P600 amplitude as the change in activity in the lIFG layer. Reproduced
with permission (CC BY-NC 4.0) from Brouwer et al. (2017).
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in context onto a LS word meaning representation in the ‘retrieval output’ layer. This498

retrieved LS word meaning representation is then projected through a recurrent ‘inte-499

gration’ (lIFG) layer, which combines it with the previous utterance context, to produce500

an updated CS utterance representation in the ‘integration output’ layer. The model501

processes sentences on an incremental, word-by-word basis, and at each word N400 am-502

plitude is estimated as the degree of change induced in the ‘retrieval’ layer, whereas P600503

amplitude is estimated as the degree of change induced in the ‘integration’ layer. Using504

these explicit linking hypotheses to the N400 and P600, the model has been shown to505

account for key psycholinguistic processing phenomena (Brouwer et al., 2017, 2021b).506

Critically, the neurocomputational instantiation of RI theory is not only explicit507

about its architecture and processing mechanisms, but also about the nature of the508

neural LS and CS representations that it assumes. The neural LS representations of509

word meaning are rather straightforwardly modeled as DLS representations (using the510

Correlated Occurrence Analogue to Lexical Semantics, COALS; Rohde et al., 2009), such511

that the dimensions of these vectors are proxies for componential semantic features.512

In the most recent instantiation of the model (Brouwer et al., 2021b), the neural CS513

representations are modeled using the vector representations from Distributional Formal514

Semantics (DFS) (Venhuizen et al., 2022). As introduced in Section 2.2.2, DFS assumes515

a meaning space MP, consisting of set of formal model structures, such that each model516

M ∈ MP determines the truth value of each proposition p ∈ P. Together these models517

form a continuous vector space (RMP), and comprehension in the neurocomputational518

model involves navigating this vector space on a word-by-word basis to recover utterance-519

final propositional meaning.520

This notion of comprehension as meaning-space navigation is illustrated in Figure 4.521

The cube in Figure 4a represents the meaning space presented in Venhuizen et al. (2022)522

(see also Figure 1), mapped from |MP| = 150 dimensions into three dimensions (using523

multi-dimensional scaling, MDS). The propositional meanings that are shown represent524
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binary vectors for a subset of the propositions in P, as well as two compositional mean-525

ings derived from combining these propositions: enter(mike,bar) ∧ order(mike,cola) and526

enter(mike,bar) ∧ order(mike,fries). The position of these vectors relative to each other527

directly reflects the world knowledge in the meaning space; propositions that are likely to528

co-occur will be positioned closer to each other in the meaning space, and vice versa. The529

model learns to navigate this meaning space on a word-by-word basis, producing real-530

valued CS output vectors (see Figure 3b) that directly reflect world-knowledge driven531

inferences. Critically, the trajectory through meaning space is directly influenced by the532

linguistic experience that the model is exposed to, in terms of the frequency of utterance-533

meaning pairs encountered during training, such that the model favors trajectories for534

more frequently encountered word sequences (Venhuizen et al., 2019a,b).535

This navigation process is illustrated in Figure 4a for the sentence prefix “Mike en-536

tered the bar, he ordered . . . ”. After processing this sentence prefix, the model finds537

itself in a state that is more in line with the sentence-final meaning enter(mike,bar) ∧538

order(mike,cola) than with the meaning enter(mike,bar) ∧ order(mike,fries). If the sen-539

tence prefix is then continued with either “cola” or “fries”, processing the word “cola”540

results in a more expected transition compared to processing the word “fries”—as mea-541

sured by the information-theoretic notion of surprisal (Hale, 2001; Levy, 2008), which542

in DFS is defined as the negative logarithm of the probability of the current point in543

meaning space given the previous point (see Venhuizen et al., 2019a). After processing544

the final word, the model arrives at a point in space that approximates the intended545

sentence-final meaning for each sentence.546

Critically, as each point in the meaning space carries its own probability in relation547

each other point in meaning space, the model updates its inferences about the commu-548

nicated state-of-affairs on a word-by-word basis. This is illustrated in Figure 4b, which549

plots the inference scores (see Equation 2) for a subset of propositions pertaining to550

referential presuppositions, as derived from the CS representation at the output layer of551
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the model at each word of the sentence “someone called the waiter, she ordered cola”.552

While the sentence-initial meaning vectors show no strong inferences regarding these553

presuppositions, the introduction of “waiter” leads to the strong inference (entailment)554

that a waiter is present in the described state-of-affairs. Furthermore, linguistic expe-555

rience leads the model to infer the presence of female referents (elli and nancy) at the556

word “she”. At the sentence-final word “cola”, the set of probabilistic inferences reflects557

the ‘world knowledge’-driven, non-literal interpretation that the model assigns to this558

sentence, namely that elli is a referent in the described situation (driven by the high559

probability of elli ordering cola in the meaning space; see Venhuizen et al., 2022 for560

details).561

This comprehension as meaning-space navigation has several important implications.562

First of all, meaning composition in the model is an incremental process in which the LS563

meaning associated with a perceived word, in context of the CS representation estab-564

lished thus far, effectively triggers a transition in CS meaning-space. This transition is565

effectuated by the “integration” (lIFG) layer of the model, which updates its state based566

on its current activity pattern—its current state—and the LS of an incoming word. The567

degree to which this state changes as a result of processing an incoming word is an568

estimate of P600 amplitude in the model. Secondly, the retrieval of word meaning is ef-569

fectively the activation of a word-associated LS representation in a DLS meaning-space,570

and this retrieval is directly affected by the state of the “integration” (lIFG) layer; that571

is, the “retrieval” (lpMTG) updates its state based on a word form perceived in the572

“ac/vc” layer, as well as the top-down state of the “integration” (lIFG) layer to retrieve573

the word-associated LS representation. The degree of change in this state is an estimate574

of N400 amplitude in the model. LS and CS meaning thus inhabit distinct meaning575

spaces, but are critically intertwined: compositional meaning construction involves in-576

tegrating LS representations into CS space, and the current point in CS space directly577

affects the anticipation of aspects of upcoming LS representations.578
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(A)

(B)

Figure 4: Comprehension as meaning-space navigation. (A) Three-dimensional mapping of the
meaning-space presented in Venhuizen et al. (2022). The gray points show a subset of the propositions
that define the meaning space, as well as two complex propositions derived from combining them. The
colored points show the word-by-word trajectories for the sentences “Mike entered the bar, he ordered
[cola/fries]”. The numbers represented the expectancy (information-theoretic surprisal) of the sentence
final words “cola” and “fries”. (B) Word-by-word inference scores for propositions pertaining to referential
presupposition at each word of the sentence “someone called the waiter, she ordered cola”. Reproduced
with permission (CC BY-NC-ND 4.0) from Venhuizen et al. (2022).
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3.3 Decoding meaning representations from neural activity579

According to RI theory, the construction of compositional utterance meaning involves a580

dynamic interplay between two distinct models of meaning. Conceptual meaning, on the581

one hand, is captured by an LS space, with representations stored across the association582

cortices, and the lpMTG serving has an epicenter/hub for their retrieval. Compositional583

utterance meaning, on the other hand, is captured by a CS space, with the lIFG serv-584

ing as an epicenter/hub for the construction of an unfolding CS representation, which585

involves compositionally integrating LS representations into this CS space. While the586

neurocomputational instantiation of RI theory is both representationally explicit about587

LS and CS, as well as mechanistically explicit about their interplay in the compositional588

process, these representations and mechanisms are only simplified abstractions of those589

underlying comprehension in the brain. Indeed, the ultimate aim is to investigate these590

representations and mechanisms in the brain more directly.591

Recent advances in neuroscience and artificial intelligence have led to the develop-592

ment of mapping models that do enable the direct investigation of neural meaning repre-593

sentation and computation in the brain through either decoding or encoding (Poldrack,594

2011; King and Dehaene, 2014). These mapping models traditionally start from a set of595

words, LS representations for these words (of which the dimensions may or may not be596

directly interpretable; see Frisby et al., 2023), and neural activity patterns elicited by the597

perception of these words, such as individual voxel activation levels from fMRI. Decoding598

models then seek to accurately predict each LS dimension from these voxel activation599

levels, effectively yielding models that quantify the degree to which each individual voxel600

contributes to a particular LS dimension. Encoding models, in turn, start from the LS601

representations, and aim to predict each voxel activation level from the LS dimensions,602

yielding models that quantify the degree to which each dimension contributes to a given603

voxel. Critically, these encoding models can also be used for decoding, by finding the604

most likely cause for a pattern of observed activity, which can for instance be achieved605
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through informed search (see Tang et al., 2023, for such an approach).606

While early mapping models using static LS representations—constructed using lan-607

guage models or human ratings—have shown that it is possible to successfully decode608

the meaning of words or sentences from neural activity (e.g., Mitchell et al., 2008; Pereira609

et al., 2018), more recent models have pushed the state-of-the-art to the decoding of con-610

tinuous language by using the contextualized representations from large language models611

(Tang et al., 2023). Beyond practical implications of such models for brain-computer612

interfaces, they also provide a toolkit for directly investigating the representation and613

computation of meaning in the brain. However, before mapping models can be harnessed614

to address such fundamental questions, important methodological and and theoretical615

challenges need to be addressed. These challenges include the inconsistency of extant616

mapping results (e.g., Frisby et al., 2023) and the difficulty in reconciling these results617

with neurocognitive theory (e.g., compare the decoding results by Tang et al., 2023618

to the cortical instantiation of RI by Brouwer and Hoeks, 2013). Furthermore, these619

models predominantly focus on LS and are challenged by the theoretical difficulties of620

the large-scale modeling of multi-word CS representations, as well as the difficulties im-621

posed by the spatiotemporal dynamics of LS and CS representation and computation in622

the compositional process (see also the discussion below). While these challenges may623

not be straightforwardly overcome, mapping models do hold the promise to be instru-624

mental in answering fundamental, fine-grained questions about the representation and625

computation of meaning in the brain.626

4 The principle of compositionality revisited627

The principle of compositionality assumes a close formal relationship between word-level628

LS and utterance-level CS meaning, since in its standard formulation, the CS meaning629

of an expression directly derives from the LS meanings of its constituents and the (syn-630

29 © 2025 Elsevier Inc. doi: 10.1016/bs.plm.2025.07.007



4.1 Compositionality as a non-linear mapping Two Models of Meaning

tactic) rules by which they are combined (Partee, 1995). Despite this assumed close rela-631

tionship, semantic theories of LS and CS meaning have developed into rather disparate632

fields of study. Models of LS meaning focus on representations that capture concep-633

tual knowledge and structure, but attempts at introducing compositionality into these634

models—e.g., through vector averaging or multiplication (Mitchell and Lapata, 2010)—635

have had limited success (see Pavlick, 2022, for discussion). Models of CS meaning, on636

the other hand, focus on representations that capture truth-conditional entailment rela-637

tions, but treat LS meaning in terms of mathematical functions, which do not capture638

any conceptual structure or similarity. While there have been attempts to incorporate639

(distributional) LS representations into such CS models, these often result in frameworks640

in which LS and CS representations are patched together through complex mathematical641

machinery, but do not fully integrate their semantic contributions (e.g., Garrette et al.,642

2014; Asher et al., 2016; Beltagy et al., 2016). Taken together, this raises the question of643

whether connecting models of LS and CS meaning in a single, unified semantic system644

is the right way forward.645

4.1 Compositionality as a non-linear mapping between meaning spaces646

Experimental findings and theoretical modeling within the neurocognition of language647

reveal that the human comprehension system does indeed harness both a model for648

LS meaning as well as a model for CS meaning. Electrophysiological research on lan-649

guage comprehension has shown that the N400 and the P600—the two most salient650

language-related components of the ERP signal—are differentially sensitive to aspects651

of LS and CS meaning, respectively. That is, the degree to which word-associated LS652

meaning is contextually anticipated has been shown to result in a reduction of N400 am-653

plitude (e.g., Kutas, 1993; Federmeier and Kutas, 1999), while expectations regarding654

utterance-level CS meaning result in a reduction of P600 amplitude (e.g., Aurnhammer655

et al., 2023). This differential sensitivity of the N400 and P600 forms the core of the656
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Retrieval-Integration theory of language comprehension (Brouwer et al., 2012; Venhuizen657

and Brouwer, 2025), an integrated theory of language electrophysiology with an explicit658

functional-anatomic mapping (Brouwer and Hoeks, 2013) and neurocomputational in-659

stantiation (Brouwer et al., 2017, 2021b). On RI theory, the N400 component of the660

ERP signal indexes the retrieval of the LS meaning of a word, a process that is directly661

modulated by top-down CS utterance context. The P600 component, in turn, indexes662

the integration of this retrieved LS word meaning into an unfolding CS representation663

of utterance meaning. Hence, RI theory assumes LS and CS meaning to coexist and664

interact during language comprehension. Furthermore, the functional-anatomic map-665

ping of RI assumes two distinct cortical epicenters/hubs, with the lpMTG serving as666

an epicenter/hub for the retrieval of LS representations that are assumed to be stored667

across the association cortices, and the lIFG as an epicenter/hub for CS meaning con-668

struction. These epicenters are wired together through dorsal and ventral white matter669

pathways, supporting the cyclic circuit required for top-down CS context to modulate670

the retrieval of incoming LS word meaning, and bottom-up LS meaning to be integrated671

into a representation of CS meaning.672

The neurocomputational instantiation of RI theory representationally and mecha-673

nistically explicates this functional-anatomic mapping, and suggests that rather than674

connecting LS and CS meaning in a rule-based, formal semantic system that mathe-675

matically conflates their distinct representational currencies, compositionality may be676

achieved through a non-linear mapping integrating representations from an LS mean-677

ing space into a meaning space for CS; that is, the neurocomputational instantiation678

of RI suggests that compositionality may be an emergent epiphenomenon of the neural679

machinery implementing the comprehension system. Fundamentally, this is, however,680

still consistent with the assumption underlying the principle of compositionality that the681

meaning of a complex expression is determined by the meanings of the individual words682

that constitute the expression, and the way that they are combined.683
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Indeed, this is highly reminiscent of the way in which large language models (LLMs)684

construct meaning. LLMs also start from LS representations, in terms of word em-685

beddings, which they progressively and non-linearly map into deeper, contextualized686

embeddings. The impressive human-like comprehension behavior of such LLMs has led687

to suggestions that they implement mechanisms that are highly similar to those im-688

plemented by the comprehension system in the human brain (Goldstein et al., 2022;689

Schrimpf et al., 2021). While such conclusions may be premature (see, e.g., Krieger690

et al., 2024), LLMs do offer interesting systems for further investigation. For one, the691

contextualized embeddings that these models construct may be the closest thing we have692

to wide-coverage CS representations. Hence, a better understanding of these representa-693

tions by grounding them in linguistic theory and relating them to neural activity through694

mapping models, may further our understanding of how CS meaning is represented in the695

brain. Furthermore, as LLMs also start from LS representations, they serve as examples696

of systems that construct approximate CS representations trough non-linear mappings697

rather than formal, rule-based mathematical machinery, offering a means to investigate698

such mappings on a large scale.699

4.2 Compositionality is continuous700

The LS and CS models of meaning that are assumed by RI theory account for fundamen-701

tally distinct types of knowledge. The LS model is assumed to capture the conceptual702

structure and similarity that is associated with semantic memory. This includes con-703

ceptual knowledge regarding semantic categories and features, for instance regarding704

taxonomy (e.g., is animate, is mammal), function (e.g., is edible, cutting tool), and705

visual form (e.g., has legs, made of steel) (McRae et al., 2005). While RI theory is706

agnostic about the precise nature of these LS representations, the neurocomputational707

instantiation employs DLS representations deriving from word co-occurrences to capture708

conceptual similarity (based on Rohde et al., 2009; see Brouwer et al., 2017). RI theory709
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does, however, critically assume the LS meaning space to be continuous in nature; that710

is, since the N400 has also been shown to be sensitive in a graded manner to the degree of711

semantic similarity (in terms of features and/or categories; see e.g., Boddy, 1981; Bentin712

et al., 1985; Federmeier and Kutas, 1999), the LS meaning space should capture gradient713

conceptual similarity. More concretely, concepts such as bar and restaurant should have714

a certain degree of similarity within the LS meaning space, capturing that both have715

shared semantic features like is location, sells food, but also that they are associated716

with different features such as has bartender and has waiter, respectively.717

RI theory asserts that retrieved LS meaning is integrated into an utterance-wide CS718

representation on a word-by-word basis. More formally, utterance representations are719

assumed to be dynamic in the sense that the CS meaning is captured in terms of ‘context-720

change potential’ (Nouwen et al., 2022); CS representations provide both a representation721

of the utterance so far, as well as a context for the retrieval of LS meaning associated with722

incoming words and the integration of this meaning into an updated CS representation.723

As such, RI assumes that the CS model allows for incremental composition of utterance-724

level meaning — similar to the way in which a dynamic semantic framework such as725

Discourse Representation Theory formalizes meaning construction.726

Furthermore, the CS representations assumed by RI should not only capture literal727

utterance-level entailments that are the focus of standard truth-conditional semantic728

theories, but should also support probabilistic inferences that reflect ‘world knowledge’-729

driven expectations; that is, since the P600 has been shown to have graded sensitivity730

to ‘world knowledge’-driven plausibility manipulations (Aurnhammer et al., 2023), the731

integrative composition of CS representations should capture this gradedness. Indeed,732

the representations from the DFS framework (Venhuizen et al., 2022), which formalize733

CS meaning in the most recent computational instantiation of RI theory (Brouwer et al.,734

2021b), have been shown to capture graded ‘world knowledge’-driven inferences as part735

of a high-dimensional propositional meaning space. Comprehension in the model can be736
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conceptualized as navigating this meaning space on a word-by-word basis, and trajec-737

tories through this space are influenced by the linguistic experience that the model is738

exposed to, such that gradedness can also arise from differences in utterance frequencies.739

In this model, CS meaning reflects propositional structure and similarity independent of740

feature-based LS similarity; that is, in the CS meaning space, sub-propositional meaning741

representations that pertain to concepts such as bar and restaurant are highly dissimilar,742

since the proposition enter(mike,bar), for instance, leads to a probabilistic inference that743

call(mike,bartender), while it entails the negation ¬enter(mike,restaurant).744

Critically, RI assumes that LS and CS meaning reside in distinct, but interacting745

meaning spaces, and that both of these meaning spaces are continuous in nature. As746

a result, the non-linear mapping from LS representations into a CS meaning space is747

in itself taken to be a continuous process, in that changes in contextually activated748

conceptual LS knowledge during comprehension will affect utterance-level CS meaning749

in a non-linear manner. Furthermore, the non-linear mapping from LS representations750

into a CS space may generalize beyond the concepts and propositional state-of-affairs751

that the comprehension system has experienced, thereby providing a basis for produc-752

tivity and systematicity of language use, within the confines of these spaces themselves.753

That is, because the meaning spaces themselves are structured and capture word- and754

utterance-level inferences, models that describe compositional comprehension as a map-755

ping between these spaces can map novel combinations of LS representations into the756

CS meaning space (productivity), and also construct novel CS meanings (systematicity),757

under the assumption that these meanings can be interpreted within the CS meaning758

space (see also Frank et al., 2009; Calvillo et al., 2021).759

4.3 Compositionality is expectation-based760

Expectation-based theories of language comprehension hypothesize that the comprehen-761

sion system continuously generates predictions about upcoming words given the unfold-762
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ing context, be it implicitly or explicitly. On Surprisal Theory, these predictions are763

directly related to processing effort, such that the more unexpected an incoming word764

is, the higher its processing difficulty, e.g., as measured using reading times (Hale, 2001;765

Levy, 2008). Indeed, the cyclic nature of RI theory renders it inherently expectation-766

based: the top-down CS context affects both expectations about the conceptual LS767

meaning associated with an incoming word, as well as expectations about CS meaning768

resulting from integrating this LS meaning (see also Aurnhammer et al., 2021; Venhuizen769

and Brouwer, 2025). The degree of contextual expectations leads to graded predictions770

regarding N400 and P600 modulations, where the retrieval processes underlying the N400771

are modulated by the degree to which LS features are pre-activated by the context, and772

the integration processes underlying the P600 by what can effectively be conceptualized773

as “comprehension-centric” surprisal—the likelihood of the current state in CS space774

given the previous state (Venhuizen et al., 2019a; Brouwer et al., 2021b).775

The expectation-based nature of RI theory raises the question of what drives ex-776

pectations about LS and CS meaning. Starting with CS meaning, expectations are777

directly conditioned on the current state in the CS meaning space. As each state in-778

herently carries its own probability in the world, as well as its co-occurrence probability779

with other points in the meaning space, each word-induced transition in meaning space780

may be more or less expected within the CS space itself. In other words, world knowl-781

edge determines which states in the meaning space are positioned close to each other,782

thereby driving expectations regarding upcoming linguistic input. Critically, however,783

these transitions in meaning space are also modulated by the linguistic experience that784

is captured by the mapping from LS to CS representations in terms of the frequency785

with which certain combinations of LS meanings are mapped onto CS meanings (Ven-786

huizen et al., 2019a). This linguistic experience reflects how often states-of-affairs are787

talked about in language, independent of their probability in the world. Expectations788

deriving from linguistic experience may often be in agreement with those deriving from789
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world knowledge, e.g., when describing a canonical situation like “John entered the cin-790

ema and ordered steak/popcorn”, where the continuation “steak” is unexpected both in791

terms of our knowledge of the world and in terms of how frequently this situation would792

be described. Critically, however, world knowledge and linguistic experience may also793

disagree; that is, there are highly likely states-of-affairs (expected according to world794

knowledge) that are very uninformative and unlikely to be talked about (unexpected795

according to linguistic experience), e.g., “Mary drove through a green light”. Indeed, it796

is far more likely to hear someone state that “Mary drove through a red light”, as this797

indicates a state-of-affairs that less probable to occur in the world (assuming Mary re-798

spects traffic laws). This shows that expectations about CS meaning are thus driven by799

the propositional co-occurrence structure of the CS space itself, as well as by bottom-up800

linguistic experience (see Venhuizen et al., 2019a, for discussion).801

Expectations about LS meaning, in turn, derive from an interplay between the top-802

down propositional co-occurrence structure of the CS space, bottom-up linguistic ex-803

perience, as well as world knowledge-driven conceptual structure of semantic memory.804

First of all, the mapping of word form onto a LS meaning representation—i.e., retrieval805

of word meaning—is modulated by top-down CS context, meaning that similar CS con-806

texts will lead to the anticipation of similar LS meanings. Which LS meanings are807

anticipated in a given CS context, however, is determined by linguistic experience; that808

is, it is linguistic experience that shapes the relative strength of the association between809

a given CS context and specific LS meanings. Finally, LS meanings that are positioned810

relatively close in the conceptual meaning space will share activation patterns and may811

therefore also influence lexical-level expectations. Hence, expectations about both LS812

and CS meaning are modulated by the linguistic experience that the system is exposed813

to, as well as both conceptual and propositional world knowledge (see also Troyer and814

Kutas, 2020a,b, for direct empirical investigations of the influence of world knowledge815

on word processing).816
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4.4 Compositionality is spatiotemporally extended817

The functional-anatomic mapping of RI theory assumes a spatial segregation between818

the epicenters/hubs for retrieval and integration in terms of the lpMTG (plus association819

cortices) and lIFG, respectively (Brouwer and Hoeks, 2013). This spatial segregation can820

be addressed using mapping models, as discussed in Section 3.3. At a bare minimum,821

this means that mapping model investigations into LS meaning, CS meaning, and the822

compositional process should honor this segregation: the lpMTG and association cor-823

tices are predicted to be more involved in LS retrieval, whereas the lIFG is predicted to824

be more focally involved in CS integration. This state of affairs is, however, further com-825

plicated by the temporal dynamics of the assumed retrieval and integration processes;826

that is, the retrieval and integration processes are known to be active simultaneously,827

leading the N400 and P600 to spatiotemporally overlap in the scalp-recorded ERP sig-828

nal (see Delogu et al., 2019, 2021; Brouwer et al., 2021a; Delogu et al., 2025). Beyond829

complications for interpreting this scalp-recorded ERP signal (see Brouwer and Crocker,830

2017, for discussion), this implies that the compositional process is also spatiotemporally831

extended. As a consequence, mapping models should take both the spatial and tempo-832

ral dynamics of the compositional process into account. Going forward, we should thus833

disentangle LS and CS representation in space, by building mapping models that target834

data from neuroimaging methods with high spatial resolution such as fMRI, as well as835

in time, through mapping models targeting data from neuroimaging methods with high836

temporal resolution such as electroencephalography (EEG). To synthesize the results on837

space and time, mapping models could be complemented by neurocomputational models838

that explicate the spatiotemporal dynamics underlying compositionality in comprehen-839

sion, such as a temporally-extended version of the neurocomputational instantiation of840

RI theory (see Brouwer et al., 2017, section 5.4, for discussion).841
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5 Conclusions842

Formal modeling approaches in linguistic theory and the neurocognition of language843

comprehension are both concerned with the question of how meaning is represented and844

constructed from linguistic signal. The principle of compositionality, which assumes845

that the meaning of a complex expression is defined as a function of the meaning of its846

parts and the way they are combined, has long been a hallmark of formal semantic ap-847

proaches. Extant models of semantic theory, however, focus on either capturing lexical848

semantic meaning in terms of the conceptual knowledge and structure, or compositional849

meaning in terms of truth-conditional entailments and inferences. Attempts at directly850

integrating these models of lexical semantics with models of utterance-level composi-851

tional semantics—to formalize a single semantic framework for compositional meaning852

representation and construction—have proven challenging, and question the validity of853

this endeavor. On the other hand, recent neurocognitive theorizing and modeling reveals854

an architecture for language comprehension that assumes Retrieval-Integration cycles, in855

which word-by-word processing involves the retrieval of lexical semantic word meaning856

from long-term memory, and the integration of these lexical semantic meanings into a857

coherent representation of compositional semantic utterance meaning.858

Combining insights from linguistic theory regarding the nature of the representations859

for lexical semantics and utterance-level compositional semantics with the computational860

mechanisms assumed to underlie Retrieval-Integration cycles, paints a picture in which861

compositional meaning construction harnesses two separate, but interacting models of862

meaning—one for lexical semantics and one for compositional semantics—that dynam-863

ically interact during the incremental process of word-by-word meaning construction.864

Within this architecture, compositionality arises from a non-linear mapping of lexical865

semantic representations into a space for utterance-level compositional meaning. This866

results in a notion of compositional integration, which emphasizes the continuous nature867
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of the compositional process and its underlying representations, the expectation-based868

dynamics of word-by-word meaning composition, as well as the observation that incre-869

mental meaning construction is a spatiotemporally-extended process in the brain. This870

novel perspective on compositionality—centered around two models of meaning—thus871

combines insights from linguistic and neurocognitive theory, and serves as a starting872

point for more integrative, interdisciplinary approaches towards modeling the represen-873

tation and computation of the meaning of words, sentences, and larger discourses.874
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