Chapter 8

Neural semantics

Harm Brouwer

Saarland University

Matthew W. Crocker

Saarland University

Noortje J. Venhuizen

Saarland University

The study of language is ultimately about meaning: how can meaning be constructed
from linguistic signal, and how can it be represented? The human language comprehen-
sion system is highly efficient and accurate at attributing meaning to linguistic input.
Hence, in trying to identify computational principles and representations for meaning
construction, we should consider how these could be implemented at the neural level
in the brain. Here, we introduce a framework for such a neural semantics. This frame-
work offers meaning representations that are neurally plausible (can be implemented
in neural hardware), expressive (capture negation, quantification, and modality), com-
positional (capture complex propositional meaning as the sum of its parts), graded (are
probabilistic in nature), and inferential (allow for inferences beyond literal propositional
content). Moreover, it is shown how these meaning representations can be constructed
incrementally, on a word-by-word basis in a neurocomputational model of language
processing.

1 Introduction

Language is about meaning. The aim of the study of language, therefore, is to capture
and represent meaning, as well as to understand how it is constructed from linguis-
tic input. Hence, albeit with different approaches and for different proximate goals,
the fields of theoretical linguistics, computational linguistics, and psycholinguistics,
all pursue systems that comprehend language. A successful comprehension system
requires the representation of grammar, meaning, and knowledge about the world,
be it in either a heterogeneous or homogeneous way (Nerbonne 1992). One system
that is particularly effective and accurate at attributing meaning to linguistic input is
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the human language comprehension system. Crucially, this system is implemented
in the neural hardware of the brain. This suggests that, in trying to identify optimal
computational principles and representations for meaning derivation, we may want
to turn to how those principles and representations are implemented in neural hard-
ware; that is, we may want to understand meaning construction and representation
in terms of ‘brain-style computation’ by identifying a neural semantics.

A framework for neural semantics should minimally meet the following require-
ments:

« neural plausibility: the assumed computational principles and representations
should be implementable at the neural level (cf. Rumelhart 1989);

. expressivity: the representations should capture necessary dimensions of
meaning, such as negation, quantification, and modality (cf. Frege 1892);

« compositionality: the meaning of complex propositions should be derivable
from the meaning of its parts (cf. Partee 1984);

- gradedness: meaning representations are probabilistic, rather than discrete in
nature (cf. Spivey 2008);

« inferential: the derivation of utterance meaning entails (direct) inferences that
go beyond literal propositional content (cf. Johnson-Laird 1983);

- incrementality: as natural language unfolds over time, representations should
allow for incremental construction (cf. Tanenhaus et al. 1995).

In the present paper, we will introduce a framework for neural semantics that of-
fers meaning representations that meet these requirements. Moreover, we show how
these representations can be used within a neurocomputational model of language
processing, to derive them incrementally, on a word-by-word basis for unfolding
linguistic input.

2 A framework for neural semantics

In order to model story comprehension, Golden & Rumelhart (1993) developed a
framework for modeling mental representations as points in a high-dimensional
space called “situation-state space” (see also Golden et al. 1994). In their model, there
is a one-to-one mapping between dimensions of the situation-state space and propo-
sitional meaning. Frank et al. (2003) extended this localist model for story comprehen-
sion by incorporating a distributed notion of propositional meaning. In what follows,
we will introduce this Distributed Situation-state Space (DSS) model and show that
it captures the aforementioned requirements for a neural semantics.
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Table 1: Distributed Situation-state Space.
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2.1 Distributed situation-state space

A DSS is an m x n matrix that is constituted of a large set of m observations
of states-of-affairs in the world, defined in terms of n atomic propositions (e.g.,
enter(john, restaurant) and order(ellen, wine))—the smallest discerning units of
propositional meaning. Each of the m observations in this matrix is encoded by set-
ting atomic propositions that are the case in a given observation to 1/True and those
that are not to 0/False (see Table 1). The resulting situation-state space matrix is then
effectively one big truth table, in which each column represents the situation vec-
tor for its corresponding atomic proposition—a point in situation-state space on a
Euclidean perspective.

Situation vectors encode the meaning of propositions in terms of the observations
in which they are the case. As a result, propositions that are the case in a similar set
of observations obtain a similar meaning, whereas propositions that mostly occur
in different observations obtain a dissimilar meaning. Crucially, the co-occurrence
of propositions across the entire set of /m observations in a DSS naturally captures
world knowledge; that is, some propositions may never co-occur (hard constraints;
e.g., a person can only be a single place at any given time), and some propositions
may co-occur more often than others (probabilistic constraints; e.g., a person may
prefer certain activities over other).

2.2 The DSS model as a neural semantics

The DSS-derived situation vectors inherently satisfy, the aforementioned require-
ments. Firstly, situation vectors are neurally plausible. They can be represented at
the neural level as firing patterns over neural ensembles, where vector components
correspond to either the firing of single neurons or to the collective firing of neural
populations.

Secondly, situation vectors are also expressive and compositional. The meaning
of the negation of an atomic proposition a, for instance, is given by the situation
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vector ¥(—a) that assigns a 0 to all observations in which a is the case, and a 1
otherwise (thus resulting in a maximally different situation vector relative to ¥(a));
this vector can be directly derived from ¥(a), the situation vector of a, as follows:
t(—-a) = 1 — ¥(a). In a similar manner, the meaning of the conjunction between
propositions a and b will be described by the situation vector that assigns 1 to all
observations in which both a and b are the case, and 0 otherwise; this vector can
be calculated by the pointwise multiplication of the situation vectors of a and b:
(a A b) = U(a)U(b) for a # b, and ¥(a A a) = ¥(a).! Since the negation and
conjunction operators together define a functionally complete system, the meaning
of any other logical combination between propositions in situation-state space can be
described using these two operations (in particular, the situation vector representing
the disjunction between p and q, 7(pV q), is defined as ¥(—(—p A —q)), which assigns
a 1 to all observations in which either p or ¢ is the case, and a 0 otherwise). Hence,
we can combine atomic propositions into complex propositions, which can in turn be
combined with other atomic and complex propositions, thus allowing for situation
vectors of arbitrary complexity (i.e., both a and b can be either atomic or complex
propositions in the aforementioned equations). This means that we can minimally
capture all meanings expressible in propositional logic.

Thirdly, situation vectors constitute graded representations; that is, they inher-
ently encode the (co-)occurrence probability of propositions. On the basis of the m
observations in the situation-state space matrix, we can estimate the prior probabil-
ity of the occurrence of each (atomic or complex) proposition a in the microworld
from its situation vector @(a): P(a) = = >, ¥;(a). Indeed, this probability is sim-
ply the number of observations in which proposition « is the case, divided by the
total number of observations constituting the situation-state space. Similarly the co-
occurrence probability of two propositions a and b can also be estimated from their
corresponding vectors #(a) and T(b): P(a A b) = L 3 T;(a)¥;(b) for a # b, and
P(a A a) = P(a). Crucially, this means that we can also compute the conditional

probability of proposition a given b: P(a|b) = Pl(fzg\)b). Hence, given a proposition b,

we can infer any proposition a that depends on b. Taking this one step further, this
allows us to define a comprehension score ¢s(a, b) that quantifies how much a propo-

sition a is ‘understood’ from b: if P(a|b) > P(a), then cs(a,b) = %?S@, other-
wise cs(a,b) = W; this score yields a value ranging from +1 to —1, where

+1 indicates that event a is perfectly ‘understood’ to be the case form b, whereas a
value of —1 indicates that a is perfectly ‘understood’ not to be the case from b (Frank,
Haselager & van Rooij 2009).

In sum, DSS-derived situation vectors offer meaning representations that are
neurally plausible, expressive and compositional, as well as graded and inferential.
Hence, the DSS model meets five of the six requirements for a neural semantics. But
what about the requirement of incrementality?

! This is to account for real-valued situation vectors, which may result from applying dimension reduc-
tion to a DSS.
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3 Neural semantics in a neurocomputational model

Natural language unfolds over time, and the human language comprehension sys-
tem incrementally attributes meaning to this unfolding input (see e.g., Tanenhaus
et al. 1995). In what follows, we will show that the DSS-derived meaning represen-
tations allow for such incremental meaning construction; that is, we will show how
situation vectors for linguistic input can be derived on a word-by-word basis in a
neurocomputational model of language processing.

3.1 A neurocomputational model

Our comprehension model is a Simple Recurrent Network (SRN; Elman 1990), con-
sisting of three groups of artificial logistic dot-product neurons: an INpUT layer (22
units), HIDDEN layer (100), and ouTpruUT layer (150). Time in the model is discrete, and
at each processing time-step ¢, activation flows from the iNpPUT through the HIDDEN
layer to the outpuT layer. In addition to the activation pattern at the iNPUT layer,
the HIDDEN layer also receives its own activation pattern at time-step ¢ — 1 as input
(effectuated through an additional cONTEXT layer, which receives a copy of the acti-
vation pattern at the hidden layer prior to feedforward propagation). The HIDDEN and
the ouTPUT layers both receive input from a bias unit. We trained the model using
bounded gradient descent (Rohde 2002) to map sequences of localist word represen-
tations constituting the words of a sentence, onto a DSS-derived situation vector
representing the meaning of that sentence (initial weight range: (—.5, +.5); zero er-
ror radius: 0.05; learning rate: 0.1, momentum: 0.9; epochs: 5000). After training,
the overall performance of the model was perfect (each output vector has a higher
cosine similarity to its target vector than to any other target vector in the training
data).

3.2 A microworld approach to DSS construction

The sentences on which the model is trained describe situations in a confined mi-
croworld (cf. Frank, Haselager & van Rooij 2009). This microworld is defined in
terms of two persons P = {john,ellen}, two places X = {restaurant,bar},
and two types of food F' = {pizza, fries} and drinks D = {wine, beer}, which
can be combined into 26 atomic propositions using the following 7 predicates: en-
ter(P,X), ask_menu(P), order(P,F/D), eat(P,F), drink(P,D), pay(P) and leave(P). A DSS
was constructed from these atomic propositions by sampling 10K observations (using
a non-deterministic inference-based sampling algorithm), while taking into account
hard and probabilistic constraints on proposition co-occurrence; for instance, a per-
son can only enter a single place (hard), and john prefers to drink beer over wine
(probabilistic). In order to employ situation vectors derived from this DSS in the
SRN, we algorithmically selected 150 observations from these 10K that adequately
reflected the structure of the world. Situations in the microworld were described us-
ing sentences from a microlanguage consisting of 22 words. The grammar of this
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microlanguage generates a total of 176 sentences, including simple (NP VP) and co-
ordinated (NP VP And VP) sentences. The sentence-initial NPs may be john, ellen,
someone, or everyone, and the VPs map onto the aforementioned propositions. The
corresponding situation vectors for these sentences were derived using the machin-
ery discussed above. In particular, existentially quantified sentences such as Someone
entered the restaurant and left map onto a vector corresponding to a disjunctive se-
mantics: (enter(john, restaurant) Aleave(john)) V (enter(ellen, restaurant) A
leave(ellen)). Universally quantified sentences, in turn, obtain a conjunctive seman-
tics, e.g., Everyone left maps onto leave(john) A leave(ellen).

3.3 Incremental Neural Semantics

On the basis of its linguistic input, the model incrementally constructs a situation
vector capturing its meaning; that is, the model effectively navigates DSS on a word-
by-word basis. This means that we can study what it ‘understands’ at each word of a
sentence by computing comprehension scores for relevant propositions (i.e., ¢s(a, b),
where a is the vector of a proposition of interest, and b the output vector of the SRN).
Figure 1 shows the word-by-word comprehension scores for the sentence John en-
tered the restaurant and ordered wine with respect to 6 propositions. First of all, this
figure shows that by the end of the sentence, the model has understood its mean-
ing: enter(john,restaurant) A order(john,wine). What is more, it does so on
an incremental basis: at the word restaurant, the model commits to the inference
enter(john, restaurant), which rules out enter(john, bar) (since these do not co-
occur in the world; P = 0). At the word ordered, the model finds itself in state that
is closer to the inference that order(john, beer) than order(john, wine) (as John
prefers beer over wine; (P = 0.63) > (P = 0.26)). However, at the word wine this
inference is reversed, and the model understands that order (john, wine) is the case,
and that order(john, beer) is (probably) not the case. In addition, the word wine also
leads the model to understand drink(john, wine), even though this proposition is
not explicitly part of the semantics of the sentence (John ordering wine is something
that co-occurs relatively often with John drinking wine; P = 0.25). Finally, no sig-
nificant inferences are drawn about the unrelated proposition leave(ellen).

4 Discussion

We have shown how the DSS model of story comprehension developed by Frank
et al. (2003) can serve as a framework for neural semantics. This framework offers
neurally plausible, expressive and compositional, as well as graded and inferential
meaning representations. Moreover, we have shown how these meaning represen-
tations can be derived on a word-by-word basis in a neurocomputational model of
language processing (see also Frank, Haselager & van Rooij 2009). Building in this
direction, we are currently employing the framework to increase the coverage of
a neurocomputational model of the electrophysiology of language comprehension
(Brouwer 2014; Brouwer, Hoeks & Crocker 2015), to model script-based surprisal
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Figure 1: Word-by-word comprehension scores of selected propositions for the sen-
tence jJohn entered the restaurant and ordered wine with the semantics:
enter(john, restaurant) A order(john, wine) (see text for details).

(Venhuizen, Brouwer & Crocker 2016), and to model language production (Calvillo,
Brouwer & Crocker 2016).

Scalability. The meaning representations that we employed in our neurocompu-
tational model were derived from a DSS constituted of observations sampled from
a microworld. For cognitive modeling, this microworld-strategy has the advantage
that it renders it feasible to make all knowledge about the world available to a cog-
nitive model, which is preferred over omitting or selecting relevant world knowl-
edge. The outlined framework for neural semantics does, however, not hinge upon
this microworld-strategy; that is, all machinery naturally scales up to larger DSSs.
Crucially, this also true if situation vectors obtain real-valued components when di-
mension reduction techniques are used to render very large DSSs computationally
manageable (i.e., all machinery extends to the domain of fuzzy logic). Hence, it is
interesting to see how larger DSSs can be automatically constructed from large cor-
pora of annotated data, such that the framework can be employed in wide-coverage
natural language processing (NLP).

Comparison to Distributional Semantics. The use of the framework in large
scale NLP raises the question how its distributed representations relate to those com-
monly used in the field of distributional semantics. In representations derived using
techniques like Latent Semantic Analysis (LSA; Landauer & Dumais 1997), the repre-
sentational currency are words. In DSSs, by contrast, the representational currency
are propositions. Thus, instead of defining the meaning of a word in terms of the words
that is co-occurs with, in the DSS model the meaning of a proposition is defined in
terms of the propositions it co-occurs with. As result, the meaning representations
naturally capture inferences driven by world knowledge, and are in addition expres-
sive and compositional in nature.

On the nature of atomic propositions. In the DSS model, as presented in
this paper, the smallest meaning-discerning units are atomic propositions (e.g.,
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order(john, beer)). However, the DSS model does not enforce these units to be
propositional in nature; that is, one may think of these units as the smallest meaning-
discerning atoms in any relevant domain. For instance, if one were to model an em-
bodied cognition perspective on language, certain atoms may reflect action-related
meaning, others sensory-related meaning, and again others conceptual meaning, the
co-occurrence of which encodes embodied meaning. Again, all machinery extends
beyond propositional atoms.

5 Conclusion

We have described a framework for neural semantics that offers neurally plausible
meaning representations. These representations directly reflect experience with the
world, in terms of observations over meaning-discerning atoms. Complex meaning
can be directly derived from these atoms (offering expressivity and compositional-
ity). Moreover, the resulting meaning representations inherently carry probabilistic
information about themselves and their relation to each other (gradedness and in-
ferentiality). Finally, it was shown how these representations can be constructed on
a word-by-word basis in a neurocomputational model of language processing (in-
crementality). This framework—which unifies ideas and techniques from theoreti-
cal linguistics, computational linguistics, and psycholinguistics—paves the way for
a more comprehensive neural semantics. In future work, we will investigate how
the approach can be extended with regard to formal semantic properties, linguistic
coverage, and as part of larger neurocomputational models.
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